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THREE-DIMENSIONAL FLOW OF A HYPERSONIC DUSTY GAS OVER A WING 

V. N. Golubkin UDC 533.6.011.72 

The atmosphere always contains an impurity of fine solid particles (dust) in some concen- 
tration. This generates interest in investigating what happens when bodies fly through 
clouds of such particles, and also the possible change of aerodynamic characteristics. By 
using approximate theories of hypersonic flow [I] and the usual simplifications of the theory 
of two-phase flow [2], we can investigate the problem analytically. 

A number of papers (e.g., [3, 4]) have examined hypersonic flow of a dusty gas over 
bodies of simple shape under the assumption that the presence of the impurity does not influ- 
ence the gas flow. Flow over a thin wedge allowing for the mutual influence of the phases 
was investigated in [5]. 

In passing through the bow shock the gas parameters change sharply, but the parameters 
of the impurity particles remain continuous [5, 6]. According to the degree of accommodation 
of their velocity and temperature to the corresponding values of the carrier phase, we dis- 
tinguish two limiting regimes of two-phase flow: "frozen," when the accommodation proceeds 
only slowly and the changes of particle parameters are negligible, and "equilibrium," where 
accommodation proceeds very rapidly in a narrow relaxation zone near the shock [6], and the 
phase parameters are the same in the main part of the field. 

The present paper uses the thin-shock-layer method [I, 7] to study three-dimensional 
hypersonic flow over a short wing at finite angle of attack in the intermediate regime when 
the relaxation zone occupies the entire shock layer adjoining the windward surface of the 
wing. The particle velocity, temperature, and concentration change markedly across the shock 
layer. However, in reality, because of the high gas density in the layer, the influence of 
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the impurity of the gas-dynamic variables in the main (Newtonian) approximation is negligible, 
but it must be accounted for in the successive approximations, particularly when adjusting 
the Newtonian formula for pressure. 

i. We consider three-dimensional hypersonic flow of a dusty gas over a wing, assuming 
that the motion of the gas and the dust is described by the equations of flow of a continu- 
ous medium. We postulate that all the particles of the impurity are identical, are spherical 
in shape, and do not change during the motion. We shall neglect collisions of particles 
and their Brownian motion, and also the volume concentration x < i. The gas viscosity is 
accounted for only when there is interphase interaction. 

As usual, we denote by V = (u, v, w), p, p, and T, respectively, the velocity vector, 
the pressure, density, and temperature~ Functions referring to particles have the subscript 
p. We write the system of equations describing stationary flow of the two-phase medium in- 
vestigated in the form 

V . ( o V )  = O, 9 ( V . v ) V  = - - V P  + N f ,  9 c v V . v T  - - - -pV,v  i n  9 ~- 

- 4 - N I . ( V p  - -  V)  - -  NQ,  p = cv(x  - -  I ) o T  , v . ( N V p )  - -  O, m p ( V p . v ) V  p ---- 

t 
= +--f, mpcVp.  V Tp = Q, f .-= 7 cD~a~pq (Vp - -  V) ,  Q = q (T  - -  Tv) , 

Zi 8 0 
q = I V - -  V v ], N = p J m p ,  m .  = "E ~ a  Pz.  

(i.i) 

o where ~, cV are the adiabatic index and the specific heat of the gas at constant volume; pp, 
c, density and the specific heat of the material of the particles; a, their radius; cD, a, 
drag coefficient of a sphere and heat-transfer coefficient for the surface, assumed to be 
known functions (see, e.g., [8]) of the Reynolds number Re, the Mach number M, and the Prandtl 
number Pr: CD = cD(Re, M), a = a(Re, Pr, M). The functions appearing in Eq. (I.I) satisfy 
the boundary conditions obtained from the usual Rankine-Hugoniot relations, the condition 
of continuity of the functions Vp, pp, Tp in the bow shock, and from the condition of imperme- 
ability of gas through the wing surface.- 

2. To solve this problem in the case of hypersonic flow over a thin wing at finite 
angle of attack, we use the thin shock-layer method [i], in which, as K + i, M~ + ~ we repre- 
sent all the desired functions in the strongly compressed gas layer between the windward 
surface of the wing and the bow shock wave in the form of expansions in the small parameter 
~, equal to the ratio of densities at the shock 

- ~ (~  , n - l ) ,  -~- = ~ + 1  + m =  I ( •  M ~ s i n  ~ = 0 ( 1 ) .  

Here and below, the subscript ~ denotes the parameters of the oncoming flow. We consider 
the most interesting and mathematically complex case of three-dimensional flow over a short 
wing, with a shock wave of unknown shape in the main approximation, assuming [7, 9], that 
for ~ + 0 the ratio of the semispan b to the root chord L is on the order b/L = O(g I/2 tana), 
and that the relative thickness is d = O(e tana). Let Oxyz be a rectangular coordinate sys- 

tem fixed in the wing. We introduce dimensionless variables on the order of one in the shock 
layer, refer all the dimensions along the axes x, y, and z, respectively, to L, LE tana, and 
LE I/2 tan a, and retain the previous notation for the dimensionless variables. We assume 
that, in the incident flow, the velocity and temperature of the gas and the particles are 
the same. Then, estimating the order of the quantities [7], the desired functions can be 
written in the form of the following asymptotic expansions: 

u/Voo = Uo cos  a + eu 1 s i n  a tg  a -t- ...~ v/Voo = ev 1 s i n  a -t- . . . ,  

tv/Vo~ = el/~tv, s i n  ~z + . . . ,  

(p  - -  p ~ ) / ( o ~ V ~ )  = s i n  2 a (Po + ep~) + . . . .  q /V~  = qo cos a + . . . ,  

P / 9 ~  = e-aPo + P~ + -. . ,  T / T ~  = (m + I )To  + . . . ,  

up/Voo = UpoCOS a 4- ...~ %/Vo~ = - - % o  s in  a A- . . . ,  

wp/Vo~ = el/2tvpl s i n  a q- ...,, N / N ~  = No -+- . . . ,  Tr,/Too = Tpo q- ...  

(2.1) 
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The functions appearing on the right side of the expansions are on the order of one 
for s + 0 and depend on the coordinates x, y, and z and a number of dimensionless similarity 
parameters. It can be seen from Eq. (2.1) that in the shock layer the velocity of the gas 
relative to the particles is hypersonic (M ~ i). Taking into account that the Re is quite 
large (Re m i), analogously to [4] we put cD = const. Substituting Eq. (2.1) into Eq. (i.i) 
and the boundary conditions and going to the limit r + 0, assuming here that the following 
similarity parameters remain constant on the order of one, we find: 

3CD'~ 15 oNoo 
I 8s a " E CvP~o t,,~ 

Iv 3CDP~ L 
sp~ ,,,: Zp= cm~ ~*' 

where t, = L/V~cos ~; the parameters Ip and Ep describe the action of the gas on the motion 
of the impurity particles, and the parameters I and E describe the inverse action of the 
impurity on the gas flow. The conditions assumed above, I = 0(i) and E = 0(i), correspond 
to the case where the presence of impurity in the zero-order approximation does not affect 
the gas flow and, as in a pure gas, u 0 = P0 = P0 = To = i. 

Also, for particles in the zero-order approximation we obtain a system of ordinary dif- 
ferential equations containing only derivatives through the shock layer (the subscript 0 
is omitted) : 

dUp dvp d (Nvp) 
% ~ = Ivq (u v - -  1), dv = Ivq'~ dy = O, 

dTp ( rp ) -- 
%--d7 = E p  m + i  i , q = [ ( u p  l )*+v~tg2cr  '/2. (2 2) 

The boundary conditions at the shock give 

Ups = vps = N's = Tps = l ,  y = S ( ~  z). ( 2 . 3 )  

I t  f o l l o w s  f rom t h e  f i r s t  two e q u a t i o n s  o f  t h e  s y s t e m  ( 2 . 2 )  t h a t  in  t h e  co m p re s sed  l a y e r  
Up - 1 = f ( x ,  Z)Vp, whence ,  a l l o w i n g  f o r  Eq. ( 2 . 3 ) ,  we o b t a i n  

](x~z) = O~ up = 1. ( 2 . 4 )  

F u r t h e r ,  f rom Eqs.  ( 2 . 2 )  and ( 2 . 3 )  we f i n d  t h e  form o f  t h e  r e m a i n i n g  f u n c t i o n s  

v v = e x p { I r ~ [ Y - - S ( x , z ) ] } ~  N = v ~  ~, 

( 2 . 5 )  { [ (,,)]} Tp = I + m t --  exp (m + 1) Ip~ \ vp ~ Ip~ = I v tg a.  

The solution (2.4) and (2.5) obtained shows that the longitudinal velocity component 
of the particles in the shock layer is conserved, while the normal component is sharply re- 
duced through the layer due to transfer of a certain portion of the momentum in that direc- 
tion from particle to gas. This influence of the impurity on the gas shows up in the first 
approximation which describes the flow structure and the pressure distribution in the three- 
dimensional shock layer. The corresponding nonlinear system of equations and boundary con- 
ditions at the shock and the wind surface y = B(x, z) have the form (we omit the subscript I) 

a-'Tf + --gg-z = O, Du  = 0, D w  = 0, 

D r =  Op @ I~vm. I ~ = I t g a ,  

2m I 2 E ' r o t  D ( p - - 9 )  mq-~ avv + ~  I 

( o+ o) 
D==--dzz + v'~y W'~z , 

os as ( os ~2 
us = -  "~-;x' vs  ---- -~ -  - -  k - ~ z ' J  - -  t ,  w s  

os 
�9 oz '  P s = - - 2 u s - - w ~ - - t ,  

(2.6) 
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m 9~=t+ps+~(2u~+w~)~ y=S(x.,z),. (2.6) 

OB OB vb = ~ + u,b--$F,~ y = B (x, z). 

From the first and third equations of this system, it follows that 

D 0m -~v = 0, (2.7) 

i.e., the basic property, established first in [9], of conservation of the flow component 
of vorticity along the streamlines remains valid, even in the presence of an impurity in 
the gas. This means that the kinematic flow picture given by Eqs. (2.6) and (2.7) and the 
corresponding boundary conditions analogously to [9] and the shape of the shock wave in this 
case are the same as in the pure gas [9]. This stems directly from the high gas density 
in the shock layer, because of which the above-mentioned momentum transfer from particle 
to gas influences the velocity field in the layer only in the higher approximations. How- 
ever, the pressure increment due to this occurs also in the first approximation. In fact, 
denoting by Pc the known pressure in the pure gas, and taking account of Eq. (2.5), from the 
fourth equation of Eq. (2.6) we have 

O__f_p= OPt 
- -  + I a  e x p  {Ip~ [y -- S (x~ z)l}. 

Oy Oy 

Integrating and satisfying the condition at the shock, we obtain the formula 

[1 - exp  {6 ,~  [B (x, z) - S (x~ z)]} l ,  ( 2 . 8 )  Pb = PeT, +~ 

from which we can determine the pressure on the wing, allowing for the influence of the im- 
purity, if we know the pressure and the shock shape in the pure gas. According to Eq. (2.8), 
the influence of the dust in the gas increases the pressure on the wing, and here the pressure 
increment depends directly on the parameter I and Ip and on the angle of attack, which appear 
in the expression for the relative velocity of the phases q. In the pure gas the dependence 
on a shows up only via the similarity parameter ~ = b/s I/2 tana [7]. Because of interphase 
energy transfer the Bernoulli integral for the equations of motion of the gas is invalid, 
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and a first-order correction to the density must be applied from the last equation of Eq. 
( 2 . 6 ) .  

By way o f  e x a m p l e ,  F i g s .  1 and 2 show t h e  p r e s s u r e  d i s t r i b u t i o n s  a l o n g  t h e  span  and 
a l o n g  t h e  r o o t  c h o r d  o f  a wing o f  h y p e r b o l i c  s h a p e  i n  p l a n ,  washed  by a f l o w  w i t h  an a t t a c h e d  
s h o c k  a t  t h e  l e a d i n g  e d g e .  The s o l u t i o n ,  o b t a i n e d  i n  [ 1 0 ] ,  f o r  t h e  c a s e  o f  f l o w  o f  a p u r e  
gas  o v e r  t h e  w i n g ,  i s  shown by t h e  b r o k e n  l i n e ,  and t h e  l i n e s  1 and 2 show t h e  s o l u t i o n  f o r  
a gas  w i t h  i m p u r i t y  ( a  = 30 and 20 ~ ) f o r  I = I p  = 1; t h e  b a s i c  g e o m e t r i c a l  s i m i l a r i t y  p a r a m -  
e t e r  i s  ~ = 3 . 1 6 .  I t  can  be s e e n  t h a t  t h e  d u s t i n e s s  o f  t h e  g a s  l e a d s  t o  an i n c r e a s e d  p r e s -  
s u r e  and makes t h e  d i s t r i b u t i o n  p b ( z )  n o n m o n o t o n i c  w i t h  a c h a r a c t e r i s t i c  maximum r o u g h l y  i n  
t h e  m i d d l e  o f  t:he s e m i s p a n .  The p r e s s u r e  d i s t r i b u t i o n  Pb(X) a l s o  becomes  n o n m o n o t o n i c  and 
h a s  a minimum a t  a l a r g e  d i s t a n c e  d o w n s t r e a m  o f  t h e  wing a p e x .  

The p r e s s u r e  d i s t r i b u t i o n  o v e r  t h e  s p a n  o f  a wing w i t h  a d e t a c h e d  s h o c k  wave i s  i l l u s -  
t r a t e d  i n  F i g .  3,  i n  t h e  e x a m p l e  o f  a p l a n a r  t r i a n g u l a r  wing (~ = 1 . 1 5 ) ,  whe re  t h e  b r o k e n  
l i n e  i f  t h e  s o l u t i o n  i n  t h e  p u r e  gas  [ 1 1 ] ,  and 1 and 2 r e f e r  t o  t h e  g a s  w i t h  i m p u r i t y  ( a  = 
40 and 30 ~ ) f o r  I = I p  = 1. I n  t h i s  c a s e  i t s  i n f l u e n c e  i s  t o  i n c r e a s e  t h e  p r e s s u r e ,  b u t  
q u a l i t a t i v e l y  t h e  fo rm o f  p b ( z ) d o e s  n o t  c h a n g e .  I n  c o n t r a s t  w i t h  [11] t h e  p r e s s u r e  a l o n g  
t h e  r o o t  c h o r d  o f  t h i s  wing becomes m o n o t o n i c a l l y  i n c r e a s i n g  ( F i g .  4 ) .  I n v e s t i g a t i o n s  have  
shown t h a t  t h e  i m p u r i t y  e f f e c t  shows t h e  same t r e n d s  a l s o  i n  f l o w  o v e r  a t r i a n g u l a r  wing o f  
f i n i t e  span  a t  a n g l e s  o f  a t t a c k  c l o s e  t o  ~ /2  [ 1 2 ] .  

An i m p o r t a n t  c h a r a c t e r i s t i c  o f  a body washed  by a d u s t y  gas  i s  i t s  a c c u m u l a t i o n  e f f i -  
c i e n c y  C, e q u a l  t o  t h e  r a t i o  o f  t h e  number o f  p a r t i c l e s  i n c i d e n t  on t h e  body  p e r  u n i t  t i m e  
t o  t h e  number o f  p a r t i c l e s  t h a t  would  f a l l  on i t  i n  t h e  a b s e n c e  o f  i n t e r p h a s e  i n t e r a c t i o n .  
To d e t e r m i n e  C one mus t  c a l c u l a t e  t h e  p a r t i c l e  t r a j e c t o r i e s ,  wh ich  i s  v e r y  d i f f i c u l t  f o r  
t h r e e - d i m e n s i o n a l  m o t i o n .  To o b t a i n  an u p p e r  e s t i m a t e  on C f o r  t h e  p l a n a r  t r i a n g u l a r  wing 
we can  u s e  t h e  s o l u t i o n  i n  t h e  v i c i n i t y  o f  t h e  p l a n e  o f  symmet ry .  The s h o c k  h e r e  h a s  t h e  
fo rm S = A0x (A0 = c o n s t ) ,  and t h e r e f o r e  t h e  t r a j e c t o r y  o f  p a r t i c l e s  e n t e r i n g  t h e  shock  l a y e r  
a t  x = ~ has  t h e  fo rm 

�9 t In A~ 
y (x,. ~) = I ~  ( i  + Aorp) e - ~  - ~ - ~  ~ v = aof,p~. 

We denote by $0 the root of the equation y(l, ~0) = O. Near the plane of symmetry all 
the particles arrive at the wing that enter the shock layer at 0 ~ $ ~ $0. If we neglect 
the motion of particles along the span and assume that particles entering the shock layer 
within the shaded area (Fig. 5) reach the entire wing, then the estimate of the cumulative 
efficiency will be as follows: 

I ~ c t g ~ +  I 
C,~, ~o = T i n  

ctg a + e -v 

F o r  a wing w i t h  ~ = 1 .15  a t  a = 45 ~ t h e  d e p e n d e n c e  C(v)  i s  shown i n  F i g .  5.  The l i m i t i n g  
c a s e  Ip  + 0 c o r r e s p o n d s  t o  t h e  gas  h a v i n g  a n e g l i g i b l y  s m a l l  i n f l u e n c e  on t h e  p a r t i c l e s ,  
b e c a u s e  o f  wh ich  C § 1; i n  t h e  c a s e  I p  ~ ~,  t h e  f l o w  o f  t h e  m i x t u r e  i s  e q u i l i b r i u m ,  and t h e  
p a r t i c l e  v e l o c i t y  c o i n c i d e s  w i t h  t h a t  o f  t h e  g a s  f l o w i n g  o v e r  t h e  wing and ,  t h e r e f o r e ,  C + 0. 

We n o t e  t h a t  a l l  t h e  a b o v e  r e s u l t s  can  be g e n e r a l i z e d  e a s i l y  t o  t h e  c a s e  o f  u n s t e a d y  
f l o w  o f  a d u s t y  g a s  i n  a s h o c k  l a y e r ,  i f  a wing w i t h  a s u r f a c e  s h a p e  v a r i a b l e  w i t h  t i m e  i s  
washed  by a s t e a d y  t w o - p h a s e  f l o w .  
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ACOUSTIC RESONANCE IN SUBSONIC AERODYNAMIC INTERACTION OF CASCADES 

R. A. Izmailov, V. B. Kurzin, and V. L. Okulov UDC 621.515:534 

It is known [i] that acoustic resonance could take place in turbomachinery cascades 
when frequencies of any periodic disturbances coincide with characteristic frequencies of 
flow fluctuations in cascades. The results of studies on this phenomenon are given in [2, 
3] for the case when acoustic disturbances are caused by fluctuations in flow in the trailing- 
edge wakes. However, the most powerful, constantly acting, and periodic source of distur- 
bances in turbomachines is the aerodynamic interaction of the impeller and the guide vanes. 
The present work is devoted to the experimental and theoretical determination of conditions 
for its appearance. 

i. Consider two annular cascades with one of them rotating about the axis of symmetry 
z at an angular velocity ~. Introduce a stationary cylindrical coordinate system (., 8, z) 
and also a moving system (r, 8 1 , z) rigidly fixed to the rotating cascade so that 

0 = 01+ Qt. (1.1) 

When the flow past each of these cascades is uniform, the velocities are periodic func- 
tions of 8 with periods 2~/N, 2D/N I, where N and N I are the number of blades in the stator 
and rotor cascades, respectively, i.e., 

V(r,O,z)= ~ v.(r,z) exp(inNO), 
oo 

V 1 (1', 01, z ) =  E 121n (r, z) exp(inNl01). 
~=--oo 
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